
Spec-Driven
Development
My Journey Using the GitHub Spec Kit

NOVEMBER 2025

NVISIA SOLUTIONS

MICHAEL HOFFMAN
nvisia Technical Director

For the past few months, I've been
assisting engineering teams with the
adoption of AI Coding Agents. In my
previous article, "Prompt Engineering
Management: Scaling AI Guardrails
and Collaboration via Shared Prompt
Libraries", I shared my initial
experiences with turning individual
prompt engineering expertise into a
shared, governed asset. This included
using GitHub Copilot Instructions to
define non-negotiable guardrails and
standards as part of context. It also
covered templates as a scaffold for
ensuring more consistent, high-quality
output from the AI Coding Agent.

Recently, I've been exploring Spec-
Driven Development (SDD) and the
GitHub Spec Kit as a potential answer
to the governance gaps left by ad-hoc
prompt engineering. SDD uses an
executable specification as the source
of truth for feature development,
rather than relying solely on
application code or WIKI content. This
approach reflects an industry shift
towards Context Engineering and

Agentic AI, with proponents
envisioning SDD as the enterprise-
grade approach for AI-first
development.

I'll offer an honest assessment of this
emerging approach. While the promise
of SDD is compelling, I believe it's
currently too early for enterprise-
grade production adoption.
Challenges like over-specification
bottlenecks, usability friction, and
spec drift can severely impact delivery
and reliability. I encountered these
issues first-hand while using the
GitHub Spec Kit to build a proof-of-
concept transaction fraud detection
platform. However, these challenges
do not render the approach useless; I
will share my insights into where I
believe SDD could be useful, and the
critical lessons learned that can guide
your exploration toward success.

PAGE 1 | INTRO

Introduction
Additional Report Context and Insights

nvisia WHITE PAPER | SPEC-DRIVEN DEVELOPMENT

https://www.linkedin.com/pulse/prompt-engineering-management-scaling-ai-guardrails-via-hoffman-edtjc/?trackingId=h4zA4nq8QXahFPazlt6wxQ%3D%3D
https://www.linkedin.com/pulse/prompt-engineering-management-scaling-ai-guardrails-via-hoffman-edtjc/?trackingId=h4zA4nq8QXahFPazlt6wxQ%3D%3D
https://www.linkedin.com/pulse/prompt-engineering-management-scaling-ai-guardrails-via-hoffman-edtjc/?trackingId=h4zA4nq8QXahFPazlt6wxQ%3D%3D
https://www.linkedin.com/pulse/prompt-engineering-management-scaling-ai-guardrails-via-hoffman-edtjc/?trackingId=h4zA4nq8QXahFPazlt6wxQ%3D%3D
https://github.com/github/spec-kit

In his article, “Spec-driven
development with AI”, Den Delimarsky
shares his definition of SDD:

Focused, Smaller Development
Teams: Shifting responsibilities
creates focused teams who
become "steerers and verifiers,"
delegating code writing to the AI
Agent and focusing instead on
defining intent and validating the
output.

PAGE 2 | WHY SPEC-DRIVEN DEVELOPMENT?

Why Spec-Driven
Development?

nvisia WHITE PAPER | SPEC-DRIVEN DEVELOPMENT

Instead of coding first and writing
docs later, in spec-driven
development, you start with a (you
guessed it) spec. This is a contract
for how your code should behave
and become the source of truth
your tools and AI agents use to
generate, test, and validate code.
The result is less guesswork, fewer
surprises, and higher-quality code.

The core idea is that the specification
becomes a living, executable artifact
that drives the entire development
lifecycle. So, why does this matter?
SDD proponents claim this approach
delivers three significant benefits by
changing how we develop:

Reliability and Quality: SDD
provides enforceable intent and
governance upfront in the context
of prompts, leading to more
reliable and higher-quality task
execution by AI Coding Agents.

Simplified Iteration and
Refactoring: Separating the "what"
(the spec) from the "how" (the
code) allows humans to update
intent, which AI Agents then use to
more efficiently implement

complex code changes and
iterative development.

Addressing Knowledge
Fragmentation

Beyond direct development benefits,
SDD addresses a foundational
organizational problem: knowledge
fragmentation.

Crucial context and architectural
decisions for projects are often
scattered across multiple platforms,
including Slack, Teams, email, user
stories, and internal WIKIs. Due to
tight deadlines, this vital information
is inevitably lost or siloed, resulting in
a direct impact on business
operations:

Expensive Onboarding: New
employees spend weeks or even
months searching for system

https://github.blog/ai-and-ml/generative-ai/spec-driven-development-with-ai-get-started-with-a-new-open-source-toolkit/
https://github.blog/ai-and-ml/generative-ai/spec-driven-development-with-ai-get-started-with-a-new-open-source-toolkit/

Increased Project Time and Cost:
Projects necessitate expensive
discovery phases, bringing in
subject matter experts to
manually reconstruct how systems
work before any coding can begin.

Increased Maintenance Cost: The
time required for support staff to
investigate root causes and
address issues spikes, impacting
business continuity and customer
satisfaction.

PAGE 3 | WHY SPEC-DRIVEN DEVELOPMENT?

nvisia WHITE PAPER | SPEC-DRIVEN DEVELOPMENT

Treating the specification as a long-
lived, centralized source of truth could
drastically reduce the time developers
spend searching for information and
context. This leads to faster
development cycles, more consistent
system behavior, and significantly less
friction when bringing new team
members up to speed.

Ultimately, I see SDD as well-aligned
for emerging practices in Context
Engineering. As AI Coding Agents
perform tasks, having structured
specifications and governance as part
of the context should radically
improve the chances of an LLM
returning the desired, compliant
results.

The Core Problem SSD
Addresses

My experience with Prompt Libraries
confirmed the need for shared context
but exposed a fundamental limit: a
prompt is just an instruction; it lacks
the formal, machine-readable
structure required to strictly enforce
organizational standards. Crucial
context (architectural decisions,
security policies, etc.) remained
scattered across corporate platforms.

SDD attempts to solve this by
providing a framework where the
Specification becomes the ultimate,
version-controlled shared context,
enforceable by the AI Agent.

context, leading to lost
productivity.

To date, several tools have been released to support Spec-Driven Development. In this
article, I’ll be focusing solely on the GitHub Spec Kit. If you are interested in other
options, check out either Kiro or Tessl, both of which provide a full agentic
development environment as well as support for SDD. The GitHub Spec Kit was
released in August 2025. Currently, it provides you with several groups of artifacts:

The Specify CLI: Gets you started with a new project leveraging the spec kit. The
command will generate the initial repository, creating templates and prompts that
are tailored to the AI Coding Agent and operating system of your choice.
Prompt Files: Supports executing a prompt with a given AI Coding Agent for each
step of the spec kit’s workflow.
Templates: Defines the structure of key artifacts, including the Specification and
Constitution.
Scripts: Execute commands from a command line, such as for interacting with Git.

The GitHub Spec Kit operationalizes SDD by enforcing a rigid, four-phase, gated process
flow, as shown in the diagram below:

PAGE 4 | INTRODUCING THE GITHUB SPEC KIT

Introducing the
GitHub Spec Kit

nvisia WHITE PAPER | SPEC-DRIVEN DEVELOPMENT

https://github.com/github/spec-kit
https://kiro.dev/
https://tessl.io/blog/announcing-tessls-products-to-unlock-the-power-of-agents/

The key to governance lies in the Constitution artifact, a non-negotiable set of rules
(Development Standards, Technical Constraints, Governance Rules) stored in the
project's Memory folder. Once the Constitution is defined, the developer follows an
iterative process for each feature:

1.Specification (The What): Define business requirements, user journeys, why the
feature is being built, and what are the expected outcomes.

2.Plan (The How): Convert the specification into a technical architecture, detailed
deisign, and implementation strategy.

3.Tasks (The Steps): Break the plan into sequential, atomic tasks for the AI agent to
execute.

4. Implement (The Code): The AI Agent executes the tasks in order while the developer
verifies the output from the Agent.

The developer's role fundamentally shifts from writer to steerer and verifier, ensuring
the artifacts meet quality standards at each step as the human-in-the-loop. During the
process, the developer also can use prompts to clarify the specification in case there
are ambiguities and analyze the specification, plan, and tasks for clarity prior to
implementation.

PAGE 5 | INTRODUCING THE GITHUB SPEC KIT

nvisia WHITE PAPER | SPEC-DRIVEN DEVELOPMENT

For evaluation, I chose to build a
Fraud Detection Platform using the
GitHub Spec Kit. The Fraud Detection
Platform was for an imaginary
organization, GloboBank. This type of
platform seemed interesting as a use
case with both front-end and back-
end concerns to address.

Creating the Project: One
Project or Multiple?

While the first step should seem
obvious, SDD brings in some
interesting questions as you get
started with your first project. If I have
an enterprise project, it's likely spread
across multiple repositories. For
example, the Fraud Detection Platform
I plan to build would have separate
repositories for the user interface and
backend services. I began to wonder,

Should each repository track their
own specification?
Should there be a single, shared
specification?
If it's shared, how do the different
repositories include it in context?

While there wasn't much guidance in
the Spec Kit documentation, there is
an active discussion about this topic
on the project’s discussion board.

In my opinion, it seemed like a better
approach to keep a centralized
repository specification containing the
high-level business requirements
across components.

This centralized specification is still
managed by GitHub Spec Kit but never
moves past the specification and
clarification phase. Then, each
component has a technical
specification managed by GitHub Spec
Kit rather than a functional or
business specification.

There's a consequence to this
approach as it requires more work
keeping the centralized specification
in sync, leading to potential Spec
Drift. Additionally, the AI Coding Agent
needs access to this centralized
specification to use it in the context of
prompts. I'll be interested to see how
others approach this problem.

If you'd like to see the result of this
structure, you can view the three
repositories I created on GitHub:

GloboBank Fraud Detection
Platform: Repository for the
master specification for the
platform

PAGE 6 | EVALUATING THE GITHUB SPEC KIT

Evaluating the
GitHub Spec Kit

nvisia WHITE PAPER | SPEC-DRIVEN DEVELOPMENT

https://github.com/github/spec-kit/discussions/152
https://github.com/NVISIA/sdd-globobank-fraud-detection-platform
https://github.com/NVISIA/sdd-globobank-fraud-detection-platform

GloboBank Fraud Service:
Repository for the back-end fraud
service.
GloboBank Fraud Management UI:
Repository for the User Interface.

Creating the Constitution:
How Do You Right-Size
Governance?

Once I knew my project structure, the
next step was to create the
Constitution file. The constitution
defines the non-negotiable governing
principles and development
guidelines for the project.

What should the content of this file
include? Here are some examples:

Development Standards: What are
the requirements for code quality
metrics? What are the minimum
technical requirements for
response time of web pages?

Technical Constraints: What is the
standard cloud provider? Which
frameworks and versions are used
for services? What are the security
compliance requirements for data?

Governance Rules: How often
should the constitution be

Ideally, this content is centralized and
standardized to be pulled into the
Constitution automatically by the AI
Coding Agent; however, in most cases,
the Constitution will be derived from
several sources, such as Centers of
Excellence, product teams, and
operations. It’s expected that the
developer will own the generation and
update of the constitution; however,
the AI Coding Agent can be leveraged
for acceleration and verification as
needed.

As I started to create the Constitution
file, I saw potential challenges. Each
repository could have different
principles. For example, a back-end
service probably won’t care about UI
standards, and vice versa. There's also
a question of scalability as multiple
having hundreds, or even thousands,
of Constitution files strewn across
repositories will quickly become
unmanageable.

I’ve been exploring the concept of
Knowledge Bases to use in Context
Engineering, and I think it could be
useful for building Constitutions.

PAGE 7 | EVALUATING THE GITHUB SPEC KIT

nvisia WHITE PAPER | SPEC-DRIVEN DEVELOPMENT

reviewed? What is the process for
amendments to the constitution?
Is there approval required for
amendments?

https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-management-ui

Knowledge Bases define rules, best
practices, etc. in Markdown files that
can be added to the context of a
prompt. These Knowledge Bases can
be at different hierarchical levels and
for different disciplines. Let’s look at
an example in the GloboBank
Knowledge Base I created.

At the top level is the GloboBank
Knowledge Base. This defines the
organization’s core values,
compliance, financial standards,
etc. An example of Compliance and
Regulatory Adherence is:
“Compliance with GDPR, PCI-DSS,
and other data protection
regulation”.

At the next level are Disciplines /
Communities of Practice
Knowledge Bases. This includes
governance from architecture,
product, security, cloud, DevOps,
etc. Each area would own their
updates to their specific
Knowledge Base.

The third level is the Domain
Knowledge Base. An example is
the Fraud Domain, which owns
standards and practices specific to
their domain. These could extend,
refer to, or even override higher-
level Knowledge Bases.

The approach I took was to use this
knowledge base for generating a
project-specific Constitution file. In my
IDE, I included the knowledge bases
folder; though, you could also use
other approaches, such as a GitHub
MCP server for the AI Coding Agent to
read your knowledge base repository.
At regular intervals, the team can
refresh their Constitution and amend
it through an analysis against the
centralized knowledge base.

If you’d like to see the result of
generating these constitutions
through GitHub Spec Kit's prompt, just
click the links below for examples:

The GloboBank Fraud Detection
Platform's Constitution

The Fraud Management User
Interface Constitution

The Fraud Service Constitution

Creating the
Specification

With the Constitution in place, it was
time to create my first feature
specification. The first specification I
tried was creating the transaction
scoring rules engine. I quickly disc-

PAGE 8 | EVALUATING THE GITHUB SPEC KIT

nvisia WHITE PAPER | SPEC-DRIVEN DEVELOPMENT

https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-rag-governance-solution/tree/main/knowledge-bases
https://github.com/NVISIA/sdd-globobank-rag-governance-solution/tree/main/knowledge-bases
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-detection-platform/blob/main/.specify/memory/constitution.md
https://github.com/NVISIA/sdd-globobank-fraud-detection-platform/blob/main/.specify/memory/constitution.md
https://github.com/NVISIA/sdd-globobank-fraud-detection-platform/blob/main/.specify/memory/constitution.md
https://github.com/NVISIA/sdd-globobank-fraud-management-ui/blob/main/.specify/memory/constitution.md
https://github.com/NVISIA/sdd-globobank-fraud-management-ui/blob/main/.specify/memory/constitution.md
https://github.com/NVISIA/sdd-globobank-fraud-management-ui/blob/main/.specify/memory/constitution.md
https://github.com/NVISIA/sdd-globobank-fraud-management-ui/blob/main/.specify/memory/constitution.md
https://github.com/NVISIA/sdd-globobank-fraud-service/blob/main/.specify/memory/constitution.md
https://github.com/NVISIA/sdd-globobank-fraud-service/blob/main/.specify/memory/constitution.md

-overed that the AI Coding Agent will
generate significant amounts of
specification text if the feature spec is
too broad. This wall-of-text was
overwhelming, leading me to greatly
reduce the scope of my first spec. I
prompted for implementing a single,
simple rule to score fraudulent
transactions.

Here’s where I see both potential
value and challenges with the step:

Constitution Considerations:
Because the constitution check is
in place, the specification included
related details, such as regulatory
requirements. As a business
analyst, this greatly reduces
cognitive load with the initial
creation of requirements.

Specification in Business
Language: The specification
language keeps communication at
the business level without diving
deep into technical
implementation. This can help
steer business and product away
from technical discussions and
maintain focus on the “what” and
not the “how”.

Potentially Easier Transition to
Agile Tools: While I haven’t

Non-Standard Template: There
could be challenges, either in an
organization or even in a team,
where specifications have
different structure. I could
envision templates becoming part
of governance and the
Constitution, defining key
sections, like the business context
and acceptance criteria.

Ownership: A key question I began
asking is: who owns this
specification? Is it the product
owner? Is it an engineer? If it's
intended to be the source of truth,
then a separate copy shouldn't be
managed in outside
documentation. Managing a
specification in a GitHub
repository may make sense for
engineers but might present
challenges for non-technical folks.

You can find the feature and technical
specifications I created at the
following links:

GloboBank Fraud Detection
Platform Spec

PAGE 9 | EVALUATING THE GITHUB SPEC KIT

nvisia WHITE PAPER | SPEC-DRIVEN DEVELOPMENT

evaluated this yet, the centralized
specifications could be turned into
an epic or feature for tracking in a
tool like Jira or Azure DevOps. This
could even be automated with MCP.

https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-detection-platform/blob/main/specs/001-transaction-risk-scoring/spec.md
https://github.com/NVISIA/sdd-globobank-fraud-detection-platform/blob/main/specs/001-transaction-risk-scoring/spec.md

GloboBank Fraud Management
User Interface Spec

GloboBank Fraud Service Spec

Planning, Tasking, and
Implementing a Feature

The GitHub Spec Kit defines a rigid
workflow for development. Once the
specification is considered "done", the
engineer(s) can then follow the steps
of planning, creating tasks for the AI
Coding Agent, and then directing the
AI Coding Agent through
implementation. This is where I began
to discover usability friction.

For example, the Constitution has a
guardrail for using Kafka. As a result,
the technical specification for my
simple rules engine was quickly
expanded by the AI Coding Agent. The
challenge here is that if I find
architectural flaws late in the
implementation phase, I may have to
roll back up to the technical
specification, or even the feature
specification.

Another challenge I encountered was
an over-specification bottleneck. This
surfaced in several ways. Going back
to the example of Kafka, I had to

clarify in the specification that I would
address streaming in a future
specification.

This wasn't the only instance though. I
needed to punt on security, logging,
deployment to AWS, etc., all because I
needed to circumvent governance for
this simple feature.

Another way this challenge surfaced
was in the frequent conversational
prompts required to "get it right". This
is where being the human-in-the-loop
can become frustrating. Do you detail
every last aspect of the project in the
specification?

At that point, is it easier to just create
the code manually? For larger feature
sets, this conversational approach
could be beneficial, but for smaller,
quicker fixes, it may not be.

PAGE 10 | EVALUATING THE GITHUB SPEC KIT

nvisia WHITE PAPER | SPEC-DRIVEN DEVELOPMENT

https://github.com/NVISIA/sdd-globobank-fraud-management-ui/blob/main/specs/001-initial-fraud-management/spec.md
https://github.com/NVISIA/sdd-globobank-fraud-management-ui/blob/main/specs/001-initial-fraud-management/spec.md
https://github.com/NVISIA/sdd-globobank-fraud-management-ui/blob/main/specs/001-initial-fraud-management/spec.md
https://github.com/NVISIA/sdd-globobank-fraud-service/blob/main/specs/001-implement-initial-fraud-service-processing/spec.md
https://github.com/NVISIA/sdd-globobank-fraud-service/blob/main/specs/001-implement-initial-fraud-service-processing/spec.md

Coming out of this experience, I can
share a few additional lessons learned
and thoughts with you:

Use Conversational Prompts

I found that requesting the AI Coding
Agent to be in a conversational mode
was much easier as the human-in-the-
loop analyzer. I could understand and
ask questions in each step of the
workflow. This is an improvement over
reviewing the wall-of-text from an AI
Coding Agent response or reviewing
the update to several artifacts all at
one time. You could even add this to
the Constitution so it doesn't have to
be defined per prompt.

Challenge of Initial Enablement

A potential challenge with SDD and
the GitHub Spec Kit is the higher
amount of time required for
enablement in the initial specs. This
issue would exist even in traditional
development, but I could envision
engineers feeling that the Agent is
taking more time because of the
challenges faced in initialization and
architecture enablement. This
includes database configuration,
security configuration, etc.

Commit Changes to Version
Control Frequently

Another good practice is to commit
your changes frequently to Git. Any
time a file is created or updated, the
spec kit uses versioning inside the file
contents. If you don’t commit often
enough, you risk losing an iteration /
version of the document. This can also
help if you want to try the AI Coding
Agent prompts against different
models.

Potential Use Cases

It feels like SDD and the GitHub Spec
Kit provide a significant improvement
over Vibe Coding, making it viable for
usage in rapid prototyping. While I’ve
yet to try the approach for an existing
application, I could immediately see
several challenges when compared to
greenfield development. The most
significant challenge is the existing
knowledge segmentation and
information silos. By reverse
engineering the code into specs, it’s
unlikely that the context will be
correct in many situations. It could be
possible to use MCP and access Jira for
reading epics, features, and stories,
but that assumes the information in

PAGE 11 | LESSONS LEARNED AND CLOSING THOUGHTS

Lessons Learned and
Closing Thoughts

nvisia WHITE PAPER | SPEC-DRIVEN DEVELOPMENT

these artifacts are up to date and
accurate. Over time, these stories
become stale and out-of-date,
potentially resulting in inaccurate
information within the specs.

Overall, my journey with SDD and the
GitHub Spec Kit was a valuable,
though sometimes frustrating, glimpse
into the future of development with AI
Coding Agents.

While SDD seems promising, the
current tooling is not yet ready for
enterprise-grade production. The best
way to understand this new workflow
is to see it for yourself. I encourage
you to explore the three GloboBank
repositories I linked in the article to
see the full structure, constitutions,
and specifications from my
experiment.

My work is focused on helping
engineering teams navigate this exact
transition. If your organization is
wrestling with AI governance, scaling
prompt engineering, or developing a
strategy for AI-first development, I'd
love to help.

PAGE 12 | LESSONS LEARNED AND CLOSING THOUGHTS

nvisia WHITE PAPER | SPEC-DRIVEN DEVELOPMENT

About the Author

Michael Hoffman, Technical
Director – nvisia

Michael Hoffman is a Principal
Architect at nvisia and a Pluralsight
author with over 25 years of
experience designing enterprise
solutions across diverse industries. A
lifelong technologist and mentor, he’s
passionate about bridging the gap
between engineering and product
development.

Michael’s technical expertise spans
front-end and back-end architecture,
with a focus on service-based APIs
and Java solutions leveraging the
Spring Framework. He has
implemented large-scale features on
IBM platforms, including WebSphere
Commerce and WebSphere Portal, and
regularly works with frameworks such
as AngularJS, jQuery, Apache Camel,
and Java.

At nvisia, Michael helps enterprise
teams navigate the transition to AI-
assisted development—combining
deep architectural rigor with a
forward-looking approach to modern
engineering practices.

Connect with Michael on LinkedIn or
explore his Pluralsight courses.

https://www.linkedin.com/in/michael-hoffman/
https://www.pluralsight.com/authors/michael-hoffman

Anthropic - "Effective context engineering for AI agents" by Prithvi Rajasekaran,
Ethan Dixon, Carly Ryan, and Jeremy Hadfield -
https://www.anthropic.com/engineering/effective-context-engineering-for-ai-
agents

GitHub - nvisia SDD GloboBank RAG Governance Solution and Knowledge Base -
https://github.com/NVISIA/sdd-globobank-rag-governance-solution

GitHub - nvisia SDD GloboBank Fraud Detection Platform -
https://github.com/NVISIA/sdd-globobank-fraud-detection-platform

GitHub - nvisia SDD GloboBank Fraud Management UI -
https://github.com/NVISIA/sdd-globobank-fraud-management-ui

GitHub - nvisia SDD GloboBank Fraud Service - https://github.com/NVISIA/sdd-
globobank-fraud-service

GitHub - GitHub Spec Kit - https://github.com/github/spec-kit

GitHub - "Spec-driven development with AI: Get started with a new open source
toolkit" by Den Delimarsky - https://github.blog/ai-and-ml/generative-ai/spec-
driven-development-with-ai-get-started-with-a-new-open-source-toolkit/

Kiro - https://kiro.dev/

MartinFowler.com - "Understanding Spec-Driven-Development: Kiro, spec-kit, and
Tessl" by Birgitta Bockeler - https://martinfowler.com/articles/exploring-gen-
ai/sdd-3-tools.html

Tessl - https://tessl.io/

YouTube - "The New Code" by Sean Grove, OpenAI -
https://www.youtube.com/watch?v=8rABwKRsec4

PAGE 13 | RESOURCES AND FURTHER READING

nvisia WHITE PAPER | SPEC-DRIVEN DEVELOPMENT

Resources and
Further Reading

https://www.anthropic.com/engineering/effective-context-engineering-for-ai-agents
https://www.anthropic.com/engineering/effective-context-engineering-for-ai-agents
https://github.com/NVISIA/sdd-globobank-rag-governance-solution
https://github.com/NVISIA/sdd-globobank-fraud-detection-platform
https://github.com/NVISIA/sdd-globobank-fraud-management-ui
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/NVISIA/sdd-globobank-fraud-service
https://github.com/github/spec-kit
https://github.blog/author/localden/
https://github.blog/ai-and-ml/generative-ai/spec-driven-development-with-ai-get-started-with-a-new-open-source-toolkit/
https://github.blog/ai-and-ml/generative-ai/spec-driven-development-with-ai-get-started-with-a-new-open-source-toolkit/
https://kiro.dev/
http://martinfowler.com/
https://martinfowler.com/articles/exploring-gen-ai/sdd-3-tools.html
https://martinfowler.com/articles/exploring-gen-ai/sdd-3-tools.html
https://tessl.io/
https://www.youtube.com/watch?v=8rABwKRsec4

nvisia WHITE PAPER | SPEC-DRIVEN DEVELOPMENT

info@nvisia.com

nvisia.com

312-985-8100

Contact Us

http://www.nvisia.com/

